Book title: Serbian Ceramic Society Conference - ADVANCED CERAMICS AND APPLICATION III: Program and the Book of Abstracts

Publisher:
Serbian Ceramic Society

Editors:
Prof.dr Vojislav Mitić
Prof. dr Olivera Milošević
Dr Nina Obradović
Dr Lidija Mančić

Technical Editor:
Prof. dr Olivera Milošević

Printing:
Serbian Academy of Sciences and Arts,
Knez Mihailova 35, Belgrade
Format
Pop Lukina 15, Belgrade

Edition:
150 copies

Sculptural Concretes: Rajko D. Blažić, High School-Academy for Arts and Conservation, Serbian Orthodox Church, Belgrade, Serbia

CIP - Каталогизација у публикацији
Народна библиотека Србије, Београд

666.3/.7(048)
66.017/.018(048)

Tiraž 150.

ISBN 978-86-915627-2-4

1. Serbian Ceramic Society (Belgrade)
 a) Керамика - Апстракти b) Наука о материјалима - Апстракти c) Наноматеријали - Апстракти

COBISS.SR-ID 209985036
The Electrical Characteristics of Nb doped BaTiO$_3$ Ceramics

Miloš Marjanović1, Miloš Đorđević1, Vesna Paunović1, Vojislav Mitić1,2

1University of Nis, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, Niš, Serbia
2Institute of Technical Sciences of SASA, Belgrade, Serbia

The Nb doped BaTiO$_3$ ceramics, with different Nb$_2$O$_5$ content, ranging from 0.5 to 2.0 at% Nb, were investigated regarding their electrical characteristics in this paper. Nb/BaTiO$_3$ ceramics used in this investigation were prepared by the conventional solid state reaction and sintered at 1320°C in an air atmosphere for 2 hours.

The dielectric characteristic of doped BaTiO$_3$ ceramics like dielectric constant, dissipation factor, impedance (resistance, reactance) have been done by using LCR-Meter Agilent 4284A in the frequency range 20 Hz-1 MHz and Agilent E4991A RF Impedance/Material Analyzer for high frequency measurements (1 MHz – 3 GHz).

Dielectric constant and tangent losses after initial large values remains nearly independent of frequency greater than 3 kHz. Dielectric measurements were carried out as a function of temperature up to 180°C. The low doped samples sintered at 1320°C, display the high value of dielectric permittivity at room temperature, 2600 for 0.5Nb/BaTiO$_3$. A nearly flat permittivity-temperature response was obtained in specimens with 2.0 at% additive content. The Curie-Weiss and modified Curie-Weiss law is used to clarify the influence of dopant on the dielectric properties and BaTiO$_3$ phase transformation. All investigated samples have an electrical resistivity $\rho > 10^5$ Ωcm at room temperature.