Dilatometer Investigations of Reactive Sintering of Zinc Titanate Ceramics

N. Obradovic1, N. Labus1, T. Sreckovic2, Lj. Zivkovic3, M. M. Ristic4

1Institute of Technical Sciences of SASA, Knez-Mihailova 35/IV, 11000 Belgrade, Serbia and Montenegro
2Center for Multidisciplinary Studies, University of Belgrade, Kneza Viseslava 1a, 11000 Belgrade, Serbia and Montenegro
3Faculty of Electronic Engineering, University of Nis, Beogradska 14, 18000 Nis, Serbia and Montenegro
4Serbian Academy of Sciences and Arts, Knez-Mihailova 35, 11000 Belgrade, Serbia and Montenegro

Abstract

Starting powder mixtures of ZnO and TiO2, in the molar ratio that is in accordance with stoichiometry of zinc titanate Zn2TiO4, were mechanically activated using planetary ball mill during different time intervals from 0 to 90 minutes. X-ray diffraction analysis, scanning electron microscopy and non-isothermal dilatometric measurements were performed in order to investigate zinc titanates formation. Processes that occur during mechanical activation lead to the formation of a specific structure of obtained powders that promoted and accelerated solid-state reactions and densification during reaction sintering.

Conclusions

The influences of mechanical activation on solid-state reaction and sintering in a mixture 2ZnO-TiO2 were investigated. From the results of the present research it is possible to conclude that mechanical activation enables better compaction of activated powders without binders, but first of all that Zn2TiO4 ceramics could be obtained by mechanical activation after certain time with appropriate thermal treatment, i.e. heating rate and sintering time, at temperature lower then in case where no activated mixtures were used.

The main conclusion based on dilatometry and XRD analysis is that activation of only 15 minutes very successfully promotes solid-state reactions and sintering processes and establishes an optimal thermal treatment of sintering at a significantly lower temperature than in the case of non-activated mixture.

Acknowledgement

This research was performed within the project No. 1832 entitled “Synthesis of functional materials from the ‘synthesis-structure-properties-application’ relationship”, financed by the Ministry for Science and Environmental Protection of the Republic of Serbia. Authors would like to express their gratitude to Prof. S. Djuric for X-ray measurements.